Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Felsner, Stefan; Klein, Karsten (Ed.)We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature.more » « less
- 
            Felsner, Stefan; Klein, Karsten (Ed.)Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.more » « less
- 
            Felsner, Stefan; Klein, Karsten (Ed.)A curve in the plane is x-monotone if every vertical line intersects it at most once. A family of curves are called pseudo-segments if every pair of them have at most one point in common. We construct 2^Ω(n^{4/3}) families, each consisting of n labelled x-monotone pseudo-segments such that their intersection graphs are different. On the other hand, we show that the number of such intersection graphs is at most 2^O(n^{3/2-ε}), where ε > 0 is a suitable constant. Our proof uses an upper bound on the number of set systems of size m on a ground set of size n, with VC-dimension at most d. Much better upper bounds are obtained if we only count bipartite intersection graphs, or, in general, intersection graphs with bounded chromatic number.more » « less
- 
            Felsner, Stefan; Klein, Karsten (Ed.)We investigate force-directed graph drawing techniques under the constraint that some nodes must be anchored to stay within a given polygonal region associated with it (i.e. some positional information is known). The low energy layouts produced by such algorithms may reveal geographic information about nodes with no such knowledge a priori. Some applications of graph drawing with partial positional information include location-based social networks and rail networks, where the geographical locations need not be precise.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
